In Vivo Immunotoxicity of SiO2@(Y0.5Gd0.45Eu0.05)2O3 as Dual-Modality Nanoprobes

نویسندگان

  • Xiumei Tian
  • Ermao Li
  • Fanwen Yang
  • Ye Peng
  • Jixiang Zhu
  • Fupo He
  • Xiaoming Chen
چکیده

We have successfully synthesized SiO2@(Y0.5Gd0.45Eu0.05)2O3 nanocomposites as a potential dual-modality nanoprobe for molecular imaging in vitro. However, their immunotoxicity assessment in vivo remains unknown. In this article, the in vitro biocompatibility of our dual-modality nanoprobes was assayed in terms of cell viability and apoptosis. In vivo immunotoxicity was investigated by monitoring the generation of reactive oxygen species (ROS), cluster of differentiation (CD) markers and cytokines in Balb/c mice. The data show that the in vitro biocompatibility was satisfactory. In addition, the immunotoxicity data revealed there are no significant changes in the expression levels of CD11b and CD71 between the nanoprobe group and the Gd in a diethylenetriaminepentaacetic acid (DTPA) chelator (Gd-DTPA) group 24 h after injection in Balb/c mice (p>0.05). Importantly, there are significant differences in the expression levels of CD206 and CD25 as well as the secretion of IL-4 and the generation of ROS 24 h after injection (p<0.05). Transmission electron microscopy (TEM) images showed that few nanoprobes were localized in the phagosomes of liver and lung. In conclusion, the toxic effects of our nanoprobes may mainly result from the aggregation of particles in phagosomes. This accumulation may damage the microstructure of the cells and generate oxidative stress reactions that further stimulate the immune response. Therefore, it is important to evaluate the in vivo immunotoxicity of these rare earth-based biomaterials at the molecular level before molecular imaging in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging

An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imagin...

متن کامل

Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging

BACKGROUND Gastric cancer is 2th most common cancer in China, and is still the second most common cause of cancer-related death in the world. Successful development of safe and effective nanoprobes for in vivo gastric cancer targeting imaging is a big challenge. This study is aimed to develop folic acid (FA)-conjugated silica coated gold nanoclusters (AuNCs) for targeted dual-modal fluorescent ...

متن کامل

Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge

Silicon dioxide (SiO2) nanoparticles (NPs) have been widely used in the biomedical field, such as in drug delivery and gene therapy. However, little is known about the biological effects and potential hazards of SiO2. Herein, the colloidal SiO2 NPs with two different sizes (20 nm and 100 nm) and different charges (L-arginine modified: SiO2 (EN20[R]), SiO2 (EN100[R]); and negative: SiO2 (EN20[-]...

متن کامل

Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T(1)-weighted magnetic resonance imaging.

In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. A...

متن کامل

Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals

Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) codoped with the rare earth ions Gd and Er/Yb/Eu are synthesized and dispersed in water. An efficient upand downconverted photoluminescence from the rare-earth ions (Er and Yb or Eu) doped into fluoride nanomatrix allows optical imaging modality for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014